The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2)

نویسندگان

  • Yujin Jeong
  • Ji-Nu Kim
  • Min Woo Kim
  • Giselda Bucca
  • Suhyung Cho
  • Yeo Joon Yoon
  • Byung-Gee Kim
  • Jung-Hye Roe
  • Sun Chang Kim
  • Colin P Smith
  • Byung-Kwan Cho
چکیده

Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor, the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Streptomyces coelicolor A3(2) lipAR operon encodes an extracellular lipase and a new type of transcriptional regulator.

A region of the Streptomyces coelicolor A3(2) chromosome was identified and cloned by using as a probe the lipase gene from Streptomyces exfoliatus M11. The cloned region consisted of 6286 bp, and carried a complete lipase gene, lipA, as well as a gene encoding a transcriptional activator (lipR). The S. coelicolor A3(2) lipA gene encodes a functional extracellular lipase 82% identical to the S....

متن کامل

The stringent response in Streptomyces coelicolor A3(2).

The stringent response was elicited in the antibiotic producer Streptomyces coelicolor A3(2) either by amino acid depletion (nutritional shiftdown) or by the addition of serine hydroxamate; both led to increased levels of ppGpp and to a reduction in transcription from the four promoters of the rrnD rRNA gene set. Analysis of untreated batch cultures revealed elevated ppGpp levels at the end of ...

متن کامل

Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans.

redD encodes the transcriptional activator of the biosynthetic pathway for undecylprodigiosin, a red-pigmented, mycelium-bound antibiotic made by Streptomyces coelicolor A3(2) and Streptomyces lividans. A promoterless version of redD preceded by the efficiently used tuf1 ribosome binding site was inserted into two different plasmid vectors, providing a convenient reporter of transcriptional act...

متن کامل

Structural and functional basis of transcriptional regulation by TetR family protein CprB from S. coelicolor A3(2)

Antibiotic production and resistance pathways in Streptomyces are dictated by the interplay of transcriptional regulatory proteins that trigger downstream responses via binding to small diffusible molecules. To decipher the mode of DNA binding and the associated allosteric mechanism in the sub-class of transcription factors that are induced by γ-butyrolactones, we present the crystal structure ...

متن کامل

bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade.

The production of the red-pigmented tripyrrole antibiotic undecylprodigiosin (Red) by Streptomyces coelicolor A3(2) depends on two pathway-specific regulatory genes, redD and redZ. RedD is homologous to several other proteins that regulate antibiotic production in streptomycetes; RedZ is a member of the response regulator family. redZ transcripts were detected during exponential growth and incr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016